53 research outputs found

    Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences

    Get PDF
    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to capture more than 90% of sequences in the Greengenes database and with nearly twice the resolution of existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the diversity of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization.Comment: 17 pages, 2 tables, 2 figures, supplementary materia

    Genetic diversity of Streptococcus pneumoniae causing meningitis and sepsis in Singapore during the first year of PCV7 implementation.

    Get PDF
    Streptococcus pneumoniae is a major cause of sepsis, meningitis and respiratory disease worldwide. Pneumococcal conjugate vaccines (PCVs) have now been implemented in many countries worldwide, including Singapore. To evaluate the effectiveness of these vaccines, pneumococcal surveillance studies are required. Detailed and unified pneumococcal epidemiology data are currently scarce in South East Asia. Thus, we present data on invasive pneumococcal (IPD) isolates from Singapore that could assist in evaluating the effectiveness of pneumococcal vaccine in Singapore. One hundred and fifty-nine invasive pneumococcal disease isolates were received by the National Public Health Laboratory in Singapore between June 2009 and August 2010. Isolates were characterized using serotyping and multilocus sequence typing. Twenty-four different serotypes were found, the most common of which were 19A, 3, 7F, 23F, 6B, 14, 8 and 19F (in rank order). One hundred and two sequence types were observed, of which 38 were novel due to new alleles or new combinations of already existing alleles. Based on the Simpson's Index of Diversity, serotypes 3, 6B and 19A were the most genetically diverse. Novel sequence types were more prevalent among conjugate vaccine serotypes 3, 19F and 23F and non-conjugate vaccine serotype 8, serogroup 15 and in non-typable isolates. We have demonstrated considerable genetic diversity among invasive pneumococci before and during the widespread use of conjugate vaccines in Singapore. Approximately half of all novel IPD clones identified in this study were non-conjugate vaccine serotypes. Although PCVs would target the most common serotypes, the high genetic diversity in non-vaccine serotypes would require further surveillance studies

    Intestinal Microbiota Regulate Xenobiotic Metabolism in the Liver

    Get PDF
    BACKGROUND: The liver is the central organ for xenobiotic metabolism (XM) and is regulated by nuclear receptors such as CAR and PXR, which control the metabolism of drugs. Here we report that gut microbiota influences liver gene expression and alters xenobiotic metabolism in animals exposed to barbiturates. PRINCIPAL FINDINGS: By comparing hepatic gene expression on microarrays from germfree (GF) and conventionally-raised mice (SPF), we identified a cluster of 112 differentially expressed target genes predominantly connected to xenobiotic metabolism and pathways inhibiting RXR function. These findings were functionally validated by exposing GF and SPF mice to pentobarbital which confirmed that xenobiotic metabolism in GF mice is significantly more efficient (shorter time of anesthesia) when compared to the SPF group. CONCLUSION: Our data demonstrate that gut microbiota modulates hepatic gene expression and function by altering its xenobiotic response to drugs without direct contact with the liver

    ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development.

    Get PDF
    Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10-08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10-19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development

    Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing.

    Get PDF
    BACKGROUND: Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE: The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS: Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS: Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION: Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants

    Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways.

    Get PDF
    Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host

    Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker.

    Get PDF
    BACKGROUND: The majority of gastric cancer cases are believed to be caused by chronic infection with the bacterium Helicobacter pylori, and atrophic corpus gastritis is a predisposing condition to gastric cancer development. We aimed to increase understanding of the molecular details of atrophy by performing a global transcriptome analysis of stomach tissue. METHODS: Biopsies from patients with different stages of H. pylori infection were taken from both the antrum and corpus mucosa and analyzed on microarrays. The stages included patients without current H. pylori infection, H. pylori-infected without corpus atrophy and patients with current or past H. pylori-infection with corpus-predominant atrophic gastritis. RESULTS: Using clustering and integrated analysis, we found firm evidence for antralization of the corpus mucosa of atrophy patients. This antralization harbored gain of gastrin expression, as well as loss of expression of corpus-related genes, such as genes associated with acid production, energy metabolism and blood clotting. The analyses provided detailed molecular evidence for simultaneous intestinal metaplasia (IM) and spasmolytic polypeptide expressing metaplasia (SPEM) in atrophic corpus tissue. Finally, acidic mammalian chitinase, a chitin-degrading enzyme produced by chief cells, was shown to be strongly down-regulated in corpus atrophy. CONCLUSIONS: Transcriptome analysis revealed several gene groups which are related to development of corpus atrophy, some of which were increased also in H. pylori-infected non-atrophic patients. Furthermore, loss of acidic chitinase expression is a promising marker for corpus atrophy

    <i>E.faecalis</i> treated DSS mild colitis model.

    No full text
    <p>Colon lengths (cm) (A) and Mice weight change (B) with 1.5% DSS with or without EC16 and L.GG treatment as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097523#s4" target="_blank">Material and Method</a>. Real time PCR on IL-1β (C) and TNF-α (D) expression in colon. Each group contains 6–8 mice. Data was expressed as mean value ±SD. Student's T-test was used for statistical analysis as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097523#s4" target="_blank">Materials and Methods</a>. * p<0.05, ** P<0.01.</p
    corecore